Celastrol increases glucocerebrosidase activity in Gaucher disease by modulating molecular chaperones.
نویسندگان
چکیده
Gaucher disease is caused by mutations in the glucosidase, beta, acid gene that encodes glucocerebrosidase (GCase). Glucosidase, beta, acid mutations often cause protein misfolding and quantitative loss of GCase. In the present study, we found that celastrol, an herb derivative with known anticancer, anti-inflammatory, and antioxidant activity, significantly increased the quantity and catalytic activity of GCase. Celastrol interfered with the establishment of the heat-shock protein 90/Hsp90 cochaperone Cdc37/Hsp90-Hsp70-organizing protein chaperone complex with mutant GCase and reduced heat-shock protein 90-associated protein degradation. In addition, celastrol modulated the expression of molecular chaperones. Bcl2-associated athanogene 3 and heat shock 70kDa proteins 1A and 1B were significantly increased by celastrol. Furthermore, BAG family molecular chaperone regulator 3 assisted protein folding and maturation of mutant GCase. These findings provide insight into a therapeutic strategy for Gaucher disease and other human disorders that are associated with protein misfolding.
منابع مشابه
Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones.
Gaucher disease is caused by mutations of the GBA gene that encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA mutations often result in protein misfolding and premature degradation, but usually exert less effect on catalytic activity. In this study, we identified the molecular mechanism by which histone deacetylase inhibitors increase the quantity and activity of GCase. Specifically,...
متن کاملHydrophilic iminosugar active-site-specific chaperones increase residual glucocerebrosidase activity in fibroblasts from Gaucher patients.
Gaucher disease is an autosomal recessive lysosomal storage disorder caused by the deficient activity of glucocerebrosidase. Accumulation of glucosylceramide, primarily in the lysosomes of cells of the reticuloendothelial system, leads to hepatosplenomegaly, anemia and skeletal lesions in type I disease, and neurologic manifestations in types II and III disease. We report herein the identificat...
متن کاملAmbroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells
Gaucher disease is caused by mutations in the glucocerebrosidase gene, which encodes the lysosomal hydrolase glucosylceramidase. Patients with Gaucher disease and heterozygous glucocerebrosidase mutation carriers are at increased risk of developing Parkinson's disease. Indeed, glucocerebrosidase mutations are the most frequent risk factor for Parkinson's disease in the general population. There...
متن کاملComparative study on glucocerebrosidase in spleens from patients with Gaucher disease.
In Gaucher disease (glucosylceramide lipidosis), deficiency of glucocerebrosidase causes pathological storage of glucosylceramide, particularly in the spleen. A comparative biochemical and immunological analysis has therefore been made of glucocerebrosidase in spleens from normal subjects (n = 4) and from Gaucher disease patients with non-neuronopathic (n = 5) and neuronopathic (n = 5) phenotyp...
متن کاملP-111: An Attempt to Facilitate the Production of Transgenic Mouse As A Model for Gene Therapy of Gaucher Disease
Background: Gaucher disease is an autosomal recessive inherited lysosomal storage disorder that affects many of the body's organs and tissues by defective function of the catabolic enzyme β-glucocerebrosidase. Gene therapy is one of the efficient ways for treatment of this disease. Due to the lack of appropriate animal models, in the field of gene therapy little progress has been done.Mate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 1 شماره
صفحات -
تاریخ انتشار 2014